Group Theory
$2^{\text {nd }}$ class
Recall: A monoiol M is a set with binary operation $M \times M \stackrel{*}{*} M$ which is associative and has on identity, e.
Notation: $M=(M, *, e)$

$$
\frac{a x e=e x a=a}{\forall a \in M}
$$

eg., $A, \mathbb{Z}, \mathbb{R}, \mathbb{C}, \ldots$ with $A=+$ or.

$$
\cdot \operatorname{Fin}(S), \operatorname{Sym}(S), \operatorname{Mat}_{n \times n}(\mathbb{R}), G L_{n}(\mathbb{R})
$$

Prop There is a unique identity $e \in M$.
Proof Suppose e^{\prime} is another identity. Then

$$
e^{\prime} \bar{p} e^{\prime} * e=e
$$

since e is identity since e^{\prime} is identity
Groups
Def A group is a monaid G such that every element in G has an inverse; ire.,

$$
\left[\begin{array}{c}
\forall a \in G, \forall b \in G \text { such that } \\
a * b=b * a=e
\end{array}\right]
$$

Eg. $G=(\mathbb{Z},+0) \quad a+(-a)=(-a)+a=0$

- $M=\operatorname{Mat}_{2 \times 2}(\mathbb{R}) \quad A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \quad B=A^{-1}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$ check: $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1+0 & -1+1 \\ 0+0 & 0+1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
in general: $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if $\operatorname{det} A \neq 0$, is $a d-b c \neq 0$ in wish case $A^{1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
T he set $\left(M_{1}, I_{2}\right)$ is a nonoid, but not a group, since, for instance

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \text { ir } A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

are not invertible. But

$$
G=G L_{2}(\mathbb{R})=\left\{A: A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { ad-bc} \neq 0\right\}
$$

is a group
Terminology, $G L=$ general linear group
Prop Every element in G has a unique inverse.
Proof Let $a \in G$, with inverse b, ie.

$$
a+b=b x a=e
$$

Suppose b^{\prime} is another inverse, ie.,

$$
a * b^{\prime}=b^{\prime} * a=e
$$

Then

$$
\begin{aligned}
& b^{\prime}=b^{\prime} * e \underset{\substack{\uparrow \\
\text { eidentily } \\
\text { of } a^{\prime} \\
\text { obverse }}}{=} b^{\prime} *(a * b)=\left(b^{\prime} * a\right) * b
\end{aligned}
$$

Recap nor the def of a group:
Notation We will write the inverse of $a \in G$ as a^{-1}. That is: $a+a^{-1}-a^{-1} a=e$

Def A group $(G, *, e)$ is a set $G w$ binary op
$*: G \times G \rightarrow G$, identity e, suck that
(1) [Associativity]
$a *(b * c)=(a * b) * c$
$\forall a, b, c \in G$
(2) [Identity]
$a * e=e * a=a$ $\forall a \in G$
(3) [Inverses] $\forall a \in G, \not a^{-1} \in C$ st $a a^{-1}=a^{-7} * a=e$

Exanyles/Non-examples
(1) $(\mathbb{Z}, 0, e=1)$ is a monoiol but not a group! ($2^{-1}=\frac{1}{2} \notin \mathbb{Z}, 0^{-1}$ does not exist etc)
(2) $\mathbb{R}^{x}=\mathbb{R} \backslash\{0\} \quad\left(\mathbb{R}^{x}, e=1\right)$ is a group

$$
\forall a \in \mathbb{R}^{x} \quad a^{-1}=\frac{1}{a} \in \mathbb{R}^{x}
$$

(3) $G L_{i n}(\mathbb{R})$ is a group $\left[n t e: G L_{1}(\mathbb{R})=\mathbb{R}^{x}\right]$

$$
\left\{A \subset M_{n \times n}(\mathbb{R}): \operatorname{det} A \neq 0\right\}
$$

$[a] \longleftrightarrow a$
(4) (Fun $(S), 0$, idols) is a monoid but not a group
eg! $S=\{1,2\} \quad f: S \rightarrow S, f(1)=f(2)=1$
has no inverse! (neither ing nor surv)
$(\operatorname{sym}(S), 0$, ids $)$ is a group
eg: $S=\{1,2, \ldots, n\}, S_{n}=\operatorname{Sym}(S)$ sympuetic group of all permutations of $1, \cdots, n$
The size of S_{n} is n !

$$
\text { eg: }(n=2) \quad S_{2}=\left\{\left(\right),\left(\begin{array}{cc}
1 & 2 \\
2 & 2 \\
\text { or }
\end{array}\right)\right\} \quad\left|S_{2}\right|=2!=2
$$

Prop (Cancellation law for groups)
In a group G, if $a+b=a \times c$, then $b=c$.
Proof $a b b=a * C \xrightarrow[(3)]{\longrightarrow} a^{-1} *(a * b)=a^{-1} *(a * c)$

$$
\begin{align*}
& \overrightarrow{(1)}\left(a^{-1} * a\right) * b=\left(a^{-1} * a\right) * c \\
& \overrightarrow{(3)} \text { e } e b=e * c \\
& \overrightarrow{(2)} \quad b=c \tag{4}
\end{align*}
$$

Rem Not the in general for monoods.

$$
M=M_{2 \times 2}(\mathbb{R}) \quad A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad C=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Then: $A B=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) \quad A C=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, but $B \neq C$ other groups in Math/Physis/chemisty/etc

- Groups of Matrices. $G L_{n}(\mathbb{R})$

$$
\begin{aligned}
& S L_{n}(\mathbb{R})=\{A \cdot \operatorname{det} A=1\} \\
& O_{n}=\left\{A: A A^{T}=A^{\top} A=I_{n}\right\}
\end{aligned}
$$

- Symmetry groups of polygons, p-lyhedra, etc

$$
\left|S_{3}\right|=3!=6
$$

Symmetries of crystals, et z

- Braid groups

$$
\begin{aligned}
& B_{n}=\{\text { bids } n\} \\
& \text { x trings/istopy } \prod_{\frac{1}{2}} * \frac{\sqrt{1} / 2}{2}=\prod_{i 2}
\end{aligned}
$$

- Fundamental groups in Topology

Question Can you understand the bovid group Bn as a group of matrices?
Review of basic number theory (Divisors, Division algonthm, primes,
Axiom $\forall A \leq \mathbb{A}\}, a \in A$ st $a \leq b$, for all $a \in A$ (every subset of \mathbb{N} has a smallest element) equivalent to: every subset of \mathbb{Z} which is bonnoled below has a smallest element. equivalat to, trey subset of $\mathbb{}$ which is bounded above has a largest element.
Thu (Enclitean division algonthm)
$\forall a, b \in \mathbb{Z}$ with $b>0$, there cere unique $q \in \mathbb{Z}$ (quotient) and $r \in \mathbb{Z}$ (remainoler) such that $a=b q+r$, with $o \leq r<b$

Thu let $I \subseteq \mathbb{Z}$ be a sit closed nuder addition and sultruction. Then either

$$
\begin{aligned}
& I=\{0\} \quad \text {, or } \\
& \text {, for some } \quad I=b: \mathbb{Z}
\end{aligned}
$$

where $b \mathbb{Z}:=\{\cdots,-2 b,-b, 0, b, 2 b, \ldots\}$
Def let a, b riteyers. We say that
a divides (written a / b)
if $b=a n$, for some $n \in \mathbb{Z}$.
(We also say b is a multiple of a)
Def let $a, b \in \mathbb{Z}$, wot both O. We say that $d \in \mathbb{Z}, d>0$ is a gcd (greatest common)
of a and b if:
(i) Ala and d / b
(ii) cla and $c / 6 \Rightarrow$ cId

Lemma Any two ged's of a and b are equal Therefore, we can talk about the ged of $a \& b$, and write it as

$$
(a, b)=\operatorname{gcd}(a, b)
$$

Proof Suppose d^{\prime} is another ged for as b.
Then; by (i), (ii) for $d \& d^{\prime}$:
d / d^{\prime} and d^{\prime} / d

(d'la \& d'lb \Rightarrow ald (by Gilifor d^{\prime})
Hence $d^{\prime}=d \cdot n=\left(d^{\prime} \cdot m\right) \cdot n=d^{\prime} m n$

$$
\Rightarrow 1=m n \quad \Rightarrow \quad \begin{aligned}
& m=n=1 \\
& \text { or } m=n=-1
\end{aligned}
$$

Since d \& $d^{\prime}>0$, we m st have $m=n=1$

$$
\therefore \quad d=d^{\prime}
$$

eg: $\operatorname{gcd}(8,6)=2$
$\operatorname{gcd}(15,9)=3$
$\operatorname{gcd}(36,24)=12$

$$
\left(\begin{array}{cc}
36=3^{2} \cdot 2^{2} & 24=2^{3} \cdot 3 \\
\operatorname{gcd}(36,24)=2^{2} \cdot 3=12
\end{array}\right)
$$

