Group Theory
2nd class
Recall: A mound M is a set with blient
openation MXM = M which is associative
and has (m) intentity, e.
Notation:
$$M = (M, X, e)$$

 $e_0: M, Z, R, C_1 - with X=+ ur$.
Fin (S), Sym(S), Mat_{hen}(R), Gln(R)
 $H, Z, R, C_1 - with X=+ ur$.
 $e_0: e_1$
 $fin (S), Sym(S), Mathen(R), Gln(R)
 Hop There is a unique identity eeM.
 $Rrof$ Suppose e's another identity. Then
 $e' = e'xe = e$
 $since e's identity for the formed t$$

in general:
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 is investile iff
det $A \neq 0$, is: $ad - bc \neq 0$
in which case $A' = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
The set (M, \cdot, I_{2}) is a microid, but not a
 $g(orp, since, for instance)$
 $A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ or $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
are not investile. But
 $G = GL_{2}(R) = \xi A : A = \begin{pmatrix} a & b \\ -c & d \end{pmatrix}$ ad-bet of
is a group
Tervinology: $GL = general linear group$
 $Prop$ Every element in G has a unique inverse.
 $Prof$ Let $a \in G$, with inverse b , is.
 $arb = b \neq a = e$
Suppose b' is another inverse, i.e.,
 $arb = b \neq a = e$
Then
 $b' = b' \neq e = b' \neq (a \neq b) = (b' \neq a) \neq b$
 $e = b' \neq e = b' \neq (a \neq b) = (b' \neq a) \neq b$
 $b' = unique associativity$
 f_{G} is a group:
Notation We will write the inverse of $a \in G$
 $A = a'$. That is: arabetia=e

Def A group
$$(G, +, e)$$
 is a set G Y binary op
 $+: G \times G$, identify e , such that
(i) [Associativity] $a + (G \times C) = (a \times b) \times C$ types
(i) [I to bit if] $a \times e = e \times a = a$ $\forall a \in e$
(i) $(Z, \cdot, e=1)$ is a nonrovial but not a group!
 $(Z^{-1}= \frac{1}{4} \in \mathbb{Z}, o^{-1} \operatorname{does} \operatorname{not} \operatorname{axit} pete)$
(i) $(Z, \cdot, e=1)$ is a nonrovial but not a group!
 $(Z^{-1}= \frac{1}{4} \in \mathbb{R}^{\times})$
(i) $(Z, \cdot, e=1)$ is a group $[\operatorname{nte}: GL_{1}(\mathbb{R}) = \mathbb{R}^{\times}]$
 $\forall a \in \mathbb{R}^{\times} : a^{-1} = \frac{1}{a} \in \mathbb{R}^{\times}$
(j) $GL_{n}((\mathbb{R}))$ is a group $[\operatorname{nte}: GL_{1}(\mathbb{R}) = \mathbb{R}^{\times}]$
 $f \in M_{n \times n}(\mathbb{R})$: $\det A \neq o$
(4) $(\operatorname{Fun}(S), o, \operatorname{id}_{S})$ is a monorial but ust a group
 $e_{g}: S = \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{$

^ .

Prop (Cancellation law for groups)
In a group 6, if
$$ab = ac$$
, then $b = c$.
Prof $ab = ac \xrightarrow{B} a^{-1} \times (a \times b) = a^{-1} \times (a \times c)$
 $\xrightarrow{(1)} (a^{-1} \times a) \times b = a^{-1} \times (a \times c)$
 $\xrightarrow{(2)} (a^{-1} \times a) \times b = a^{-1} \times (a \times c)$
 $\xrightarrow{(2)} b = c$
Rem Not true is general the monords.
 $M = M_{2X2}(R) \quad A = (b^{0}) \quad B = (b^{0}) \quad C = (b^{0}) \quad D = (b^{0})$
Then: $AB = (b^{0}) \quad B = (b^{0}) \quad C = (b^{0}) \quad D = (b^{0}) \quad$

Thim let
$$J \subseteq Z$$
 be a set closed under
addition and subtraction. Then either
 $J = 207$ or
 $J = b Z$ for some boo
where $bZ := E..., -2b, -6, 0, b, 26, -1$ protictor
 $J = b Z$ for some $b > 0$
where $bZ := E..., -2b, -6, 0, b, 26, -1$ protictor
 $J = b Z$ for some $b > 0$
 $J = b Z$ for some $h = Z$.
 $J = divide b$ (written $a | b$)
if $b = an$, for some $n \in Z$.
(We also say b is a numbrie 4a)
 $J = a and b$ is a numbrie 4a)
 $J = a and b$ is a god (greatest common)
 $f = a and b$ if:
(i) dla and d/b
(ii) cla und clb \Rightarrow cld
 $J = a god$ ($greatest$ common)
 $f = a and b$ if
 $J = a and clb = cld$
 $J = a god (a, b)$
 $J = god (a, b)$
 $J =$

$$\begin{aligned} d' la & g' lb \Longrightarrow dld \quad (b \ Gi' l \ for \ d') \\ Hence & d' = d \cdot n = (d' \cdot m) \cdot n = d' \cdot m n \\ \implies l = mn \quad \implies m = n = -1 \\ or \quad m = n = -1 \\ Since & d & d \\ & \Rightarrow d = d' \end{aligned}$$

eq:
$$gcd(8,6) = 2$$
,
 $gcd(15,9) = 3$
 $gcd(36,24) = 12$,
 $(36 = 3^2 \cdot 2^2 \quad 24 = 2^3 \cdot 3$
 $gcd(36,24) = 2^2 \cdot 3 = 12$)